

DOI <https://doi.org/10.36719/3104-4735/2/4-8>

Rovshan Humbataliyev
Azerbaijan State Marine Academy
Doctor of Mathematics
<https://orcid.org/0000-0002-9114-8953>
rovshangumbataliev@rambler.ru
Shahin Agazade
Baku State University
PhD in Pedagogy
<https://orcid.org/0000-0003-1594-9545>
seriye_allahverdiyeva@mail.ru
Farida Bayramova
Baku State University
<https://orcid.org/0009-0001-8413-692X>
feridamb1970@gmail.com
Umida Humbatali
Sumgayit State University
<https://orcid.org/0000-0002-8413-6193>
umidahumbatali@gmail.com

Information Technology-Based Model for Cancer Treatment

Abstract

Cancer is a serious global socio-health issue, and developing effective approaches for its treatment is of great importance. Advances in the field of information technology (IT) have significantly expanded the possibilities for personalizing and optimizing cancer treatment. This article presents an integrative model that enables the application of IT in cancer therapy. Key components of the model include artificial intelligence, big data analytics, telemedicine, and digital platforms. Compared to existing studies, the proposed model provides a personalized treatment strategy based on the synthesis of the patient's genetic, clinical, and lifestyle data. The results indicate that IT-based approaches not only improve the quality of life of patients but also enhance the efficiency of oncology management.

Keywords: *cancer, information technology, artificial intelligence, big data, telemedicine, oncology, digital health*

Introduction

Cancer is a group of complex diseases that develop in various organs and tissues under the influence of multiple genetic, epigenetic, and environmental factors. According to the World Health Organization (World Health Organization, 2023), cancer is the second leading cause of death globally, claiming millions of lives each year. Early diagnosis, personalized therapy, and continuous monitoring are essential components of effective cancer treatment.

Traditional medical approaches are primarily based on clinical symptoms and histological analyses. However, these methods often fail to reflect the genetic and molecular characteristics of individual patients. As a result, some treatment protocols are applied universally, yet their effectiveness varies due to individual differences. To address this limitation, innovative approaches in the field of information technology (IT) are being increasingly adopted.

In recent years, artificial intelligence (AI) and machine learning algorithms have begun to play a crucial role in early cancer detection and the optimization of treatment strategies (Lee, Kim, Park, 2020; Johnson, Gupta, 2022). Telemedicine has opened new avenues for delivering healthcare services to patients in remote regions (Zhang, Wang, Li, 2021).

Big data analytics allows for in-depth exploration of patient information and the development of individualized treatment plans (Smith, Johnson, Lee, 2019).

However, most existing studies apply these technologies in isolation, lacking systematic integration. For instance, Lee S., Kim J., and Park H. focused solely on the diagnostic process, while Zhang L., Wang Y., and Li Q. (Zhang, Wang, Li, 2021) examined the characteristics of telemedicine services. Smith A., Johnson M., and Lee K. (Smith, Johnson, Lee, 2019) discussed the challenges of big data analysis but gave limited attention to clinical implementation examples.

This paper introduces an integrative model that combines all these IT components. The aim is to develop personalized, effective, and adaptive treatment protocols based on the synthesis of the patient's genetic, clinical, and social data. Such an approach is expected to open a new chapter in the management of oncology.

The application of information technologies in cancer treatment has been explored in various studies. Lee S., Kim J., and Park H. (Lee, Kim, Park, 2020) confirmed the accuracy of artificial intelligence methods in the early diagnosis of cancer; however, their research provided limited insight into treatment optimization and patient monitoring. Johnson R. and Gupta N. (Johnson, Gupta, 2022) demonstrated the advantages of machine learning techniques in evaluating patient prognosis, yet they gave little attention to the implementation of such approaches in real clinical systems.

In the field of telemedicine, Zhang L., Wang Y., and Li Q. (Zhang, Wang, Li, 2021) proved the effectiveness of remote monitoring and patient supervision systems, but the integration of these systems with big data and artificial intelligence remains an unresolved issue. Smith A., Johnson M., and Lee K. (Smith, Johnson, Lee, 2019), in analyzing the use of big data in oncology, highlighted challenges related to data quality and management, yet offered only limited proposals for the implementation of an integrative model. In addition to these, mathematical modeling of cancer (Humbataliyev, Mamedov, 2024) and modeling of various related issues (Humbataliyev, Tagiyev, 2024; Humbataliyev, Humbatali, Humbatali, 2024; Humbataliev, 2014; Mirzoev, Humbataliev, 2011; Humbataliev, 2008) have also been studied.

Overall, the main shortcoming of existing work is the isolated application of technologies and the lack of data integration. The proposed model addresses this gap by consolidating all patient information into a unified platform, performing comprehensive analysis, and enabling dynamic adaptation of the treatment plan.

Research

Problem Statement. The implementation of a personalized treatment approach in oncology requires comprehensive analysis of the patient's genetic, epigenetic, clinical, and lifestyle indicators. At the same time, the real-time collection and evaluation of data during the treatment process is essential for therapy adaptation. One of the main challenges faced by modern healthcare systems is the effective management and analysis of this large-scale and heterogeneous data.

The primary objective of the problem is to develop an integrative, personalized, and adaptive model for cancer treatment by leveraging the capabilities of information technologies. This model should enable the synthesis of patient data from multiple sources into a unified database, its analysis through artificial intelligence algorithms, real-time monitoring via telemedicine, and the generation of an optimal treatment protocol.

Proposed Solutions. Enhancing the effectiveness of cancer treatment through information technologies requires a comprehensive and multidisciplinary approach. This approach consists of five core components: data collection and integration, big data analytics, artificial intelligence and machine learning, telemedicine and digital platforms, and the development of personalized treatment plans. The role and function of each component are explained in detail below.

Data Collection and Integration. A personalized approach to oncology treatment fundamentally relies on the systematic collection and integration of multi-source and heterogeneous data within a unified platform (Ritchie, et al., 2015). This includes clinical indicators, genetic and molecular profiles, radiological images, laboratory analyses, as well as social and environmental factors of the patient. For example, international initiatives such as The Cancer Genome Atlas (TCGA) have

established standards-based infrastructures for the large-scale collection and distribution of genetic data (Weinstein, et al., 2013).

Due to the heterogeneity of data, healthcare interoperability standards like HL7 and FHIR must be applied to ensure the seamless interaction of different systems (Mandel, et al., 2016). At the same time, data privacy is protected through legislation such as HIPAA and GDPR, thereby strengthening patient rights and data security.

Big Data Analytics. The analysis of collected data is carried out on big data platforms, where technologies such as Hadoop and Apache Spark are widely utilized (Dean, Ghemawat, 2008). Both static and dynamic analytical methods, including clustering, pattern recognition, and correlation detection techniques, are applied to refine molecular subtypes of cancer and assess treatment responses (Kourou, et al., 2015).

For instance, the use of genomic and proteomic data in big data analysis plays a crucial role in identifying biomarkers in cancer, which is essential for personalized therapy (Huang, et al., 2021).

Artificial Intelligence and Machine Learning. Artificial intelligence (AI) and machine learning methods have ushered in a new era in oncology diagnostics and treatment processes. Deep learning models analyze radiological and histopathological images with high accuracy to determine tumor localization and type (Esteva, et al., 2017). Furthermore, AI algorithms analyze patients' clinical indicators and genetic data to predict therapy effectiveness and disease prognosis (Kourou, et al., 2015).

For example, the IBM Watson for Oncology platform supports oncologists in developing personalized treatment plans and is applied in clinical practice (Somashekhar, et al., 2018). AI models also possess continuous learning capabilities, refining their predictions based on new incoming data.

Telemedicine and Digital Platforms. Telemedicine technologies significantly improve access to oncology services, especially for patients living in remote areas (Kruse, et al., 2017). Digital health platforms enable continuous monitoring of patient status and facilitate effective communication with healthcare providers. During the COVID-19 pandemic, telemedicine proved to be an essential tool in maintaining uninterrupted cancer treatment (Al-Shamsi, et al., 2019).

Additionally, digital platforms not only provide psychosocial support for patients but also increase adherence to treatment and ease clinical decision-making.

Development of Personalized Treatment Plans. Personalized treatment plans based on big data and AI analyses are designed by taking into account the patient's genetic, molecular, and clinical characteristics (Collins, Varmus, 2015). This approach not only improves therapy effectiveness but also helps prevent side effects and enhances patients' quality of life.

For instance, personalized PARP inhibitor therapy for carriers of BRCA1/2 gene mutations is successfully applied in cancer treatment (Lord, Ashworth, 2017). The system continuously monitors treatment progress and proposes adaptations according to the patient's condition, enabling a dynamic and adaptive therapy approach.

Advantages. The application of information technologies in cancer treatment enables multidisciplinary and innovative approaches. The main advantages of this approach are as follows:

Comprehensive Data Integration. Personalized therapy in cancer treatment is fundamentally based on the synthesis of data collected from various sources-including genetic, clinical, radiological, laboratory, and social factors (Ritchie, et al., 2015). This comprehensive integration facilitates more accurate diagnostics and the development of effective treatment strategies tailored to the unique profile of each patient. Thanks to modern information systems, unifying and standardizing data in a single database significantly enhances the quality of clinical decision-making (Mandel, et al., 2016).

Adaptive and Dynamic System. A key advantage of the system is the real-time adaptation of treatment according to the patient's condition. Artificial intelligence models and continuous monitoring analyze the patient's response to therapy and update treatment protocols as needed (Somashekhar, et al., 2018). This adaptive approach not only improves therapy effectiveness but also minimizes side effects and helps maintain the patient's quality of life.

Telemedicine Capabilities. Telemedicine technologies provide continuous and high-quality healthcare services to oncology patients, especially those living in remote and resource-limited areas (Kruse, et al., 2017). By eliminating time and geographical barriers between patients and specialists, telemedicine ensures treatment continuity and psychosocial support. Its importance was further highlighted during the pandemic (Al-Shamsi, et al., 2020).

Enhanced Prognostication by Artificial Intelligence. Artificial intelligence and machine learning methods demonstrate high accuracy in predicting treatment effectiveness and potential side effects (Kourou, et al., 2015; Esteva, et al., 2017). This supports the clinical decision-making process and allows for early-stage risk management. Moreover, the continuous learning capability of algorithms leads to the ongoing optimization of treatment strategies.

Efficient Resource Management. The application of information technologies assists in the effective management of clinical resources and reduces healthcare costs (Collins, Varmus, 2015). For example, personalized treatment plans and real-time monitoring reduce hospitalizations and the need for additional examinations. This enhances the sustainability of healthcare systems and optimizes resource utilization.

Conclusion

The integration of information technologies into various stages of cancer treatment marks the beginning of a new era in modern oncology. The proposed integrative model systematically and optimally organizes diagnosis, treatment, and monitoring processes by comprehensively considering the patient's genetic, molecular, clinical, radiological, and social determinants. This approach not only enhances the effectiveness of personalized therapy but also improves the patient's quality of life, reduces risks during treatment, and ensures efficient management of healthcare resources.

Various studies demonstrate that the application of information technologies significantly improves treatment outcomes for oncology patients (Esteva, et al., 2017; Somashekhar, et al., 2018). For example, prognostic models developed using artificial intelligence help increase the efficacy of chemotherapy and immunotherapy, while telemedicine ensures continuity of care and provides vital support for patients living in remote areas (Kruse et al., 2017; Al-Shamsi, et al., 2020).

Future research should prioritize clinical trials of the proposed integrative model across different types of cancer, adaptation to various patient groups, and the enhancement of legal and ethical aspects related to technology implementation. At the same time, establishing appropriate standards to ensure data privacy and security in the application of information technologies is essential.

Thus, the use of information technologies in cancer treatment can drive the development of multidisciplinary approaches and fundamentally improve the quality and effectiveness of oncology care.

References

1. Al-Shamsi, H.O., et al. (2020). A Practical Approach to the Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-19) Pandemic: An International Collaborative Group. *The Oncologist*, 25(6), 936–945.
2. Collins, F.S., Varmus, H. (2015). A New Initiative on Precision Medicine. *New England Journal of Medicine*, 372(9), 793–795.
3. Dean, J., Ghemawat, S. (2008). MapReduce: Simplified Data Processing on Large Clusters. *Communications of the ACM*, 51(1), 107–113.
4. Esteva, A., et al. (2017). Dermatologist-level classification of skin cancer with deep neural networks. *Nature*, 542(7639), 115–118.
5. Huang, S., et al. (2021). Applications of Artificial Intelligence in Cancer Diagnosis and Prognosis. *Cancer Letters*, 471, 61–71.
6. Humbataliev, R.Z. (2008). On generalized solution of a class higher order operator-differential equation. *Turkish Journal of Mathematics*, 32(3), 305–314.

7. Humbataliev, R.Z. (2014). On solvability of some boundary value problems for elliptic type operator-differential equations. *Eurasian Mathematical Journal*, 5(4), 33–55.
8. Humbataliyev, R.Z., Humbatali, M.R., Humbatali, U.R. (2024). Mathematical Modeling of Climate Change. *Scientific Research, Fundamentals of Science and Education Proceedings of the 11th International Scientific Conference*, 65–67.
9. Humbataliyev, R.Z., Mamedov, M.M. (2024). Optimizing cancer cell proliferation and treatment strategies. *Education and Research Activities in the New Era: Realities and Challenges Proceedings of the 3rd International Scientific Conference*, 555–557.
10. Humbataliyev, R.Z., Tagiyev, E.N. (2024). Modeling the Process of Evaluation of Information Security Risks by the Application of Computer Mathematical Systems. *Ancient Land*, 6(7), 21–24.
11. Johnson, R., Gupta, N. (2022). Machine Learning in Cancer Prognosis: A Comprehensive Review. *Frontiers in Oncology*, 12. <https://doi.org/10.3389/fonc.2022.865432>
12. Kourou, K., et al. (2015). Machine learning applications in cancer prognosis and prediction. *Computational and Structural Biotechnology Journal*, 13, 8–17.
13. Kruse, C.S., et al. (2017). Telemedicine Use in Oncology: A Systematic Review. *JMIR Cancer*, 3(1), 23.
14. Lee, S., Kim, J., Park, H. (2020). Artificial Intelligence in Early Cancer Diagnosis: A Review. *Journal of Medical Systems*, 44(3), 52.
15. Lord, C.J., Ashworth, A. (2017). PARP inhibitors: Synthetic lethality in the clinic. *Science*, 355(6330), 1152–1158.
16. Mandel, J.C., et al. (2016). SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. *Journal of the American Medical Informatics Association*, 23(5), 899–908.
17. Mirzoev, S.S., Humbataliev, R.Z. (2011). On Normal Solvability of Boundary Value Problems for Operator-differential Equations on Semi-axis in Weight Space. *Taiwanese Journal of Mathematics*, 15(4), 1637–1650.
18. Ritche, M.D., et al. (2015). Methods of integrating data to uncover genotype–phenotype interactions. *Nature Reviews Genetics*, 16(2), 85–97.
19. Smith, A., Johnson, M., Lee, K. (2019). Big Data Analytics for Precision Oncology. *Computational Biology and Chemistry*, 83. <https://doi.org/10.1016/j.combiolchem.2019.107121>
20. Somashekhar, S.P., et al. (2018). Watson for Oncology and breast cancer treatment recommendations: agreement with an expert multidisciplinary tumor board. *Annals of Oncology*, 29(2), 418–423.
21. Weinstein, J.N., et al. (2013). The Cancer Genome Atlas Pan-Cancer analysis project. *Nature Genetics*, 45(10), 1113–1120.
22. World Health Organization. *Cancer Fact Sheet*. (2023), Retrieved from <https://www.who.int/news-room/fact-sheets/detail/cancer>
23. Zhang, L., Wang, Y., Li, Q. (2021). Telemedicine Applications in Oncology: Opportunities and Challenges. *Telemedicine and e-Health*, 27(6), 547–555. <https://doi.org/10.1089/tmj.2020.0274>

Received: 18.07.2025

Approved: 04.12.2025